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1 Introduction

Over the past twenty-plus years of computer vision research, a wide variety of algorithms
have bee developed to solve many visual subproblems, ranging from edge extraction to van-
ishing point analysis to geometric model matching. Despite these advances, however, very
few systems have been built that exploit the information in images to solve practical prob-
lems. The problem is a lack of understanding of how these algorithms (and representations)
should be combined; the goal of this contract was to investigate the use of machine learning
techniques to automatically build executable object recognition systems out of these readily
available components.

This report describes a system, called the Schema Learning System (SLS), which is the
inal product of three years of research under contract #F30602-91-C-00371. Significantly,
SLS does not try to match abstract object models directly to image data. Drawing on twenty
years of computer vision research, SLS compares models to data by reasoning across multi-
ple leL. Of mpesentabofo The computer vision literature contains many representational
systems for visual data, as well as many algorithms for creating and evaluating instances of
thes mpresentations. SLS integrates this research by selecting the visual procedures and
eretat that will best satisy a particular goal, and building an executable control

strstgqy for invoking those procedures to achieve the goal.
SLS's recognition strategies should be immediately use1u in such emerging technologies

mas in vehicles and lexible manu t systems, where predictable environments
invite the se of special-purpose recognition strategies. In the future, they may also be
pirt of gneral-pupose computer vision systems that rely on expectations to reduce the
oamputatiomai cot of visio, except in those rare cases where contextual predictions fail.

1.1 Th. Schema Learning System

The Schema Learning System (SLS) learas special-purpose recognition strategies from train-
iag imags. A teche provides a training signal indicating the target (or goal) in each

training image. By comparing the teacher's ground-truth information about a scene with
the imag data, SLS learn an accurate and efficient strategy for recognizing an object or
object elm. This strategy is then available to application programs such as autonomous
vehicles or manufacturing robots any time they need to recognize an instance of the object
or object clam. SLS is therefore a compile-time (or 'of-line" or Obatch') system that learns
strategies in advance of the run-time application that will use them, as shown in Figure 1.

More specically, SLS learns strategies to satisfy recoriton goals. One motivation for
al-diriected vision is that biological vision systems are driven by the goals and actions of

an agmt, so tha, for example, a frog has special-purpose strategies for finding prey and
detecting threats (21. More recently this idea has been revived by others who argue that
computer vision should be a purposive process by which agents extract information from the
world pertinent to their goals and actions 17, 1). In SLS, a teacher provides recognition goals
specifyg the objects to be recognized, along with their target representations and accuracy
threshol Par example, a goa might be to recognizse the position of a building to within

'Me*t of =&O maeius frcm It141.
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Figure 1: Top-level view of SLS architecture

5% of the distance from the camera to the object, or to identify the centroid of the image
projection d a tree, plus or minus one pixe1L Whtateve the recognition goal, SLS's task is
to lIan a robust and efficient strategy for satisfying it.

1.2 The Processing Model

SLS models vismo in terms of viwA procedures (VPs) and Apotheses. Visual procedures are
algauithms foma the computer vision literature, such as region segametation, line extraction
or PC"e deem to. VP. are thus analogou to knowledge sources in a blackboard system
(e.g. 117, 131) or Ullman's visual routines 1301, in the sense that they are the procedural
primitives wsed to build larger strategies. Hypotheses ame instances of intermediate-l1evel
uuprmestataims o( the image and/or 3D world, including regions, line segments, coordinate

trusfirtatonsand object labels. At each step in the recognition process, a VP is applied
to =w or more hypotheses and either 1) measures features of the hypothesis or 2) generates
"ew, higher-lievel hypotheses.

R IroM itionM strategies are represented by recogrub "r hs, which are a generalization
of decision trees to multiple levels of repreetat-ion. Recognition graphs control hypothesis
geaseation as well as hypothesis verification, as shown in Figure 2. The underlying premise
is tha isnage data should not be matched directly to object models. Instead, a sequence
a( mare and mor abstract descriptions of the image data, represeted as intermediate-level
hypotheses, are built up under constraints provided by the object model, until eventually
goat-level hypotheses are generated. Recognition graphs therefore model vision as a sequence

of represatatioal transformations interleaved with hypothesis verifications. Each level of
the recognition graph corresponds to one type of intermediate-ýlevel hypothesis (in black-
bused termiinology, one level of abstraction), and the decision tree at each level controls how
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hypotheses of that type are verified. Verified hypotheses are transformed into more abstract
hypotheses, until eventually goal-level hypothes are generated. (Recognition graphs are
described moae thoroughly in Section 2.3.)

Level of Representation: N

Stwe
pup

1.3 TeThevelPae of SLS

process theexplortion agoihm Lenelsafthe morep and meieiabstrestact vrf hypotheseeet-
al pwduing gotat -le M sael e h N ue FP) ypothesesr thhe rerigfmeap esalgrihma tboa anaye.

Them" awund-byexa opfies h ipou algorithm inpc eeeapestiatdiners th genesalizd cone-

cept o( how correct goal-level hypotheses are generated from images through sequences of
interuediato-Ievel hypotheses. Typically it will discover that in order to recognize an ob-
ject reliably, several (possibly redundant) methods of hypothesis generation must be used.
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Finally, the graph optimization algorithm creates decision trees at each level of the recogni-
tion graph that minimize the expected cost of verification. The final result is a multi-level

recognition graph representing an efficient and reliable strategy for identifying an object or
object class in terms of the specified goal (e.g. 2D or 3D, approximate or exact).

1.4 Contributions

The primary contribution of SLS is that it automatically learns special-purpose recognition
strategies under supervision. There has been earlier work on learning shape-based recognition

strategies from CAD/CAM models under known lighting conditions (20, 21, 81, and on
learning to recognise two-dimensional objects from features that can be measured directly
in the image, assuming known prior probabilities [91. None of these systems, however, can
do what SLS can do: learn to recognize artificial or natural objects in complex images by
inteating cues from shape, cokr, context and other types of knowledge. SLS is able to
achieve these goals because it reasons across multiple levels of representation, and takes
advantage of the wealth of available computer vision procedures.

A more mundane, but still important, contribution is that SLS is the first system to
supply a us- (or application program) with an estimate of the expected cost of satisfying
a recogition goal. This information can be critical for planning and resour allocation in
robotic systems that rely on computer visim. Just as importantly, if the library of visual
procedures is incapable of robustly achieving a recognition goal, SLS warns the user that the
goal will not be met.

Faially, SLS gives a boost to the theory of go-directed (purpos•ve) visio, which has
been crticized by researchers who argue that the goal of computer vision research is not
just to create object .ecognitim systems, but to put forth a coherent and parsimonious
theory of vsio. These researchers claim that by modeling vision as a loose (to be critical,
ad-hoc) collection of special-purpose recognition systems, proponents of goal-directed vision
abandon that goal. SLS puts forth a counterclaim by example, however, a claim that special-
purpose recognition strategiss do not have to be ad-hoc or unstructured, that they can arise
through predictable and scientifc mechanisms in response to a viewie's environment. Indeed,
the criticism can be turned around: given that special-purpose strategies can be acquired
through experience, it seems unnecessary and usnstified to assume that all visual goals must
be met by a .singe general-purpose mechanism.

2 SLS: Representations

SLS is a compile-time (or *training-time') algorithm for learning visual control strateies
under supervwou. The user, acting as a teacher, provides recognition goals and training
images. SLS learns to satisfy the goals by building recognition strategies that start with
raw sensory data and build nccessively more abstract hypotheses. Hypotheses are tested at
each level of representatmio, =ad vered hypotheses are used to generate new, more abstract
hypotheses, eventually generating goal-level hypotheses.

7



2.1 The Processing Model

SLS is simila to a blackboard system in that it views recognition as a process of apply-
ing visual procedures to hypotheses. Hypotheses are representations of the image or 3D
world such as points, lines, regions or surfaces; visual procedures are algorithms from the
mage understanding literature such as vanishing point analysis or geometric model match-

ing. Recognition strategies take the place of dynamic schedulers in traditional blackboard
systems, selecting which visual procedure(s) to apply at each step.

Thereore, recognition can be described as a branching sequence of VP invocations.
The sequence begins when data arives, typically in the form of image hypotheses2 . Visual
procedures are applied to images, producing low-level hypotheses such as points, lines or
regoas. New VPs are then applied to these low-level hypotheses, transforming them into
mcre abstract hypotheses. Still more VPs awe applied to these hypotheses in a repeating
Cycle, until eventually goal-level hypotheses ae created.

2.1.1 frandormation Procedures (TPs)

Unlike most blackbowd systems, however, SLS refies its processmg model by dividing visual
procedures into two classes, trfrmeah precedweu (TPs) and jeretwr meswentva pro-
cadw (FMPPs&). Transformatios procedures trsform old hypotheses into new hypotheses
ast a level of representation. Examples include vanishing point analyis, which cre-
at" sface orientation hypothees from pencil of image lines, and stereo line matching,
which a ts" world (3D) line hypoees from pairs of image (2D) line hypotheses. Feature

uement procedures, by wa of comparion, mure properties of pmro Wly existing
hypohees

Although TPs ae described as matio perato, the word 'transformation'
should not be construed as implying a on-tom.-e mapping between old and new hypothe-
s. TPs caa combia@ afrmati from multip hypotheses and may generate an arbitrary
aumber of new hypoeheses. Stereo matching, for umple, combines two image (2D) line hy-
potheses to generate a ingle world (3D) line hypaots. In addition, TPs do not consume
ther amuments, so multiple TPs may be applied to a angle hypothesis. Some readers may
thereore And it h*e to think of TPs as procedures that generate new hypotheses from
old hypotheses, rather than as trsformt operators.

2.1.2 PFeture Measurement Proemdures (FMPs)

Feature masMement procedus (FMPs) calculate features of hypotheses, such as planar
surface orientations and region intensities. During the recogntion process, many properties
of a hypothesis may be sacalculated, so the set of known features describing a hypothesis

"STIicaf. blot ast setmav. Ada1e sinratoon may isuobs protedat to ecquin ras* data.
*Sbhkhmbd *71y6s *m the VeAvie stau &me town to rtae to both •tr•onsaws proc es

sad htstase memmera pedu
"Tb. tesJt, I suMu 140- 4"G9A, SAbnWui. Of w~St~ eWWe iaKematee0y i the imae UedfgLkd-

lag keatme. We me dth t rns 'psrty to rale to nomabk hypotw amibst, each as caor, sad
tas ten 'es4a0e' to reff so &NO"* mmteW ftes thn atoitietw., such as red.
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is referred to as its knowledge este. Applying a FMP to one or more hypotheses computes
a feature of those hypotheses, advancing them to new knowledge states. The number of
knowledge states is finite, since continuous features are divided into discrete feature ranges.
(Section 3.1.1 describes how continuous features are divided.)

2.1.3 VP Declarations

Cue of the design criteria for SLS was that it should make as few assumptions about the
knowledge bae as possible. SLS therefore estimates the costs and reliabilities of the VPs
empirically, instead of relying on human estimates. As shown in Figure 3, the knowledge base
contains only enough syntactic information to allow SLS to apply VPs to training images.
In particular, foe every visual procedure, the knowledge base specifies how many hypotheses
are required as (rmu-time) arguments, the level of representation of each argument, any pre-
reqisite features, and a lisp S-expression for invoking the VP. (Object models, if necessary,
are included in the S-expression.) In addition, TP declarations include the type of hypoth-
esis generated, while PMP declarations include the number of discrete ranges into which a
continuous feature should be divided.

In addition to the gaeric templab, Figure 3 also shows three examples of VP declara-
tious. The At example is the vanising point TP that creates surface orentao hypotheses
from pain of penils by analysing perspective didamon 1111. The next two examples show
how c dpendcim expressed tn the kowledge base. The projection FMP projects
boundme of wire.frime model as imag lIm, given the pose of the object. The projected
lime. e asdred in the pow hypothesi for ue by other VPs., and the FMP returns a symbol
dedwh g whthae or sot the object wa in the Sield of vww. The geometric matching FMP
compares projected Iwo quesmta to data hoes, %ad cannot be applied to poee hypothetheses
until alter thir projectns hao been computed. A prrequisite for applying the geometric
macking PMP to a pose hypothews, therefore, as that the pose has been projected and is
within the camera's Le of view.

2.2 Object Models

Sysactically, object models an specied compile-time paramets to visual procedures,
as smeked above. Coaceptually, however, object models should be viewed as being com.
posd f away partial desacptioms of an objt residing in the system's (sem)permanent
memoy. Each partial descriptio as available, both durog tramng and at rn-tume, to be
used a arupments to visual procedures. Models we currently implemented as compile-time
paramet•s only because so mechanism to mathing model fragments to visual procedures
has been impleMented.

2.3 Recognition Graphs

Interwematies strateVe ar rweprnted in SLS as rruawn ,wrp, which are a general-
satim o0 decMon trees to multiple levels of rmpresetion. Recognitio graphs control both

hypothnes tranaoe-mation and hypothesm venlcatso., as shown in Figure 4, The premise
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behind the formalism is that object recognition is a series of small verification tasks inter-
leaved with representational transformations. The recognition process begins by verifying
low-level hypotheses. Low-level hypotheses that are verified (or at least not rejected) are
then transormmed into higher level hypotheses, where the verification process is repeated.
The cycle of verification followed by transformation continues until goal-level hypotheses are
generated and verifed.

Level of RepmsenMatio: N

Know. ....

KMW. pup
VA"p

Fwp 4: A mopitice graph. Leves of the graph are decison trees that verif hypothe-
we using feature men-wmoot procedures (FMPs). Hypotheses that reach a subgoal are
trandaa med to the mnext evel of repre tation by tmandormation procedures (TPs).

The structum 4 the recogmtaso graph rviects the venficatiIo/traasformation cycle.
Level the graph corrapoads to kevel of ,epraeatatou. with the bottom level representing

ad th. top leeel �c�s�pdi�g to use's recogtu goals Levels are connected by
TrPs " trandaMm hkypothems at one level into hypotheses at another. Verified goa-level
hypothem satisf the ua 's reMVotin sgl.

11



2.3.1 Decision Trees

Each level of the recognition graph is a decision tree directing how hypotheses at that level are
verified. Borrowed from the field of operations research, decision trees are trees of alternating
choice nodes and chance nodes designed to help managers make decisions about actions with
uncertain outcomes ([19], Chapter 15). Choice nodes in a decision tree represent decisions
over which the agent (typically a business manager) has control; chance nodes represent
events the agent cannot control but whose likelihoods can be estimated. Using decision
trees, managers estimate the probabilities of potential consequence of a decision or series
of decisions before any action is taken. For example, a manager might consider investing
in a new manufacturing facility. If the investment is made and the product sells there will
be a profit, but there is some possibility that the product will not sell and the investment
will be lost. This scenario can be represented by a decision tree with a choice node at the
root representing the option to invest or not, and a chance node representing whether or
not the product sells. In Al terminology, decision trees can be thought of as state-space
representations similar to game trees with probabilistic opponents..

(Readers familiar with Al-style decision trees such as MD3 [27] will note that the choice
nodes in such systems are omitted. These systems make all their choices while learning,
leaving only the chances nodes in the tree. SLS does the same, leaving only one option at
each choice node whenever possible. Nonetheless, it is convenient to leave the choice nodes in
the formalism, both for describing the optimization algorithm that produces minimum-cost
trees and for representing those situations where optimal control choices cannot be made
until rn-time.)

In SLS, decision trees represent the process of verifying or rejecting hypotheses. Choice
nodes in the tree are hypothesis knowledge states, represented by sets of features, while
chance nodes correspond to PMP invocations. The agent in this scenario is the control
program that decides which feature to calculate next (i.e. which FMP to apply) based on
the knowledge state of a hypothesis. The uncontrollable events are FMP invocations that
return discrete features according to estimated distributions. Verification is a cycle in which
the control strategy selects a FMP, the FMP returns a feature, and the control strategy
selects another PM. This cycle is represented in a decision tree as a progression from a
choice node to a chance node and on to a new choice node. Eventually the process leads to
a leaf node, corresponding to features that either verify or discredit a hypothesis.

F'igue 5 shows a complete SLS-style decision tree. Hypotheses begin at the start state
with no computed feature values, leaving the control program to choose which feature to
compote. In the example shown in Figure 5 the choice is between two FMPs, A & B.
Whichever FMP is selected will return a feature, advancing the hypothesis to a new knowl-
edge state. (The reader may note that duplicate knowledge states can be joined, since the
same knowledge state results from applying A and then B as B and then A. This converts
SLS's decision trees into directed acyclic graphs,)

12
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Figure 5: A Decision Tree. The squares indicate choice nodes, where the agent chooses which
action to take, and the circles indicate chance nodes representing actions with probabilistic
outcomes. In SLS, the agent is the run-time control program, choice nodes are hypothesis
knowledge states corresponding to sets of discrete feature values, and chance nodes are FMP
invocation to determine feature values. (For efficiency, the implementation joins duplicate
nodes, creating a decision graph rather than a decision tree.

13



2.3.2 Decision Tree Optimization

Ultimately, the goal behind the decision tree formalism is not just to represent options and
outcomes, but to aid in decision making. SLS constructs efficient verification strategies
by determining at compile-time which options minimize the expected cost of verification.
By making these decisions at compile-time, SLS eliminates the need for complex dynamic
scheduling and permits the run-time control mechanism to be implemented as table-lookup.

SLS therefore decides at compile-time which FMP to apply from each hypothesis knowl-
edge state, producing decision trees with only one option at each choice node (like the one in
Figure 6). One of the options considered for each knowledge state is to stop and either accept
or reject the hypothesis as it is. For hypotheses below the goal level of representation, the de-
cision is equivalent to chooing whether or not a hypothesis should be transformed to a higher
level of representation. When SLS learns to generate hypotheses it associates preconditions
with each T'P for selecting which hypotheses should be transformed. The preconditions are
hypothesis features, and once the corresponding properties have been computed there is no
reason to apply more FMPs to a hypothesis. For example, in Figure 6 we assumed that the
preconditions for transforming a hypothesis were the features &I (computed by FMP A) and
bl (computed by FMP B). Therefore, any hypothesis with feature values a2, b2 or b3 can be
rejected, since they cannot lead to a goal state. SLS selects which feature to compute first by
choosing the FMP that minimizs the expected cost of recognition, based on the estimated
costs and outcome probabilities associated with each FMP. For example, in Figure 6, SLS
decided that it was man efficient to compute feature A first and then, if &I was returned,
compute feature B, rather than computing B first and then, if bI was returned, computing
A. (Section 3.3 describes the optimization algorithm in detail.)

2.3.3 Multiple-argument FMPs

The compile-time control decisions made by SLS are conditioned on the knowledge states
of hypotheses. Stated informally, SLS decides 'if a hypothesis reaches knowledge state
X, then take action Y". To make these decisions, SLS needs to know the possible actions
from each knowledge state, their costs and the likelihoods of their outcomes. When the
actions are singe-argument FMPs, their applicability can be determined syntactically from
the knowledge base and the costs and distributions of outcomes can be estimated from the
training data. When the actions are multiple-argument FMPs, however, determining their
applicability at compile-time is more difficult.

The problem is that in order to invoke a multiple-argument FMP on a hypothesis, other
arguments must be available. For example, a spatial relation FMP might test whether
an object hypothesis is near (above, below, adjacent to) another hypothesized object of a
specified type. Such FMPs cannot be applied to a hypothesis unless a second hypothesis
of the appropriate type is available at run-time. Unfortunately, when making a decision of
the type "if a hypothesis reaches knowledge state X...", SLS cannot know whether a second
hypothesis will be available for a multiple-argument FMP (although it does estimate the
probability of another argument being available). Therefore when selecting which FMP to
apply from a given knowledge state, SLS chooses the FMP that minimizes the expected cost,
regardless of how many arguments it takes. If the selected FMP takes a single argument,

14
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Figure 6: An SLS decision tree. SLS selects which FMP (if any) to apply from each knowledge
date at compile-time, producing decision trees that have only one option at each choice
node. The tree shown here is the tree SLS might build in response to the situation depicted
in Figure 5, once it decided that only hypotheses with feature values al and bI should be
transformed to the next level of representation, and that it was more efficient to compute
feature A before feature B. Note that if FMP A returns a2, then the hypothesis is rejected
and no further actions are taken.
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SLS knows that it can be executed at run-time and removes all other options from the choice
node. If the selected FMP requires multiple arguments, however, SLS also selects a second
choice, and if necessary a third choice, fourth choice, and so on, in order to ensure that
at least one of the options is executable at run-time. In effect, SLS sorts the options at a
knowledge state until it reaches a single-argument FMP, and the run-time control mechanism
is expected to apply the highest-rated FMP whose arguments can be filled.

2.3.4 Decision Trees as Classifiers

Each level of a recognition graph can be viewed as a classifier for distinguishing hypotheses
that lead to good goal-level hypotheses from those that do not. An unusual feature of these
claifime is that they are allowed to produce false positive results but not false negatives,
since verifying a poor hypothesis merely causes it to be transformed to a higher level of
representation and reverified, while rejecting a valid hypothesis may cause the strategy as a
whole to fail. As a general rule, therefore, if the features in a knowledge base can distinguish
good hypothesis from bad ones, SLS will learn highly efficient strategies. If the features are
not good indicators of hypothesis reliability, on the other hand, SLS will learn a strategy
that pursues many hypotheses, in order to be sure of finding a good one.

The exception to this rule is at the goal level. Depending on the application, rejecting a
valid hypothesis may or may not be as damaging as verifying a false one. Consequently, the
best criterion function for training a goal-level classifier is task-specific. The ideal goal-level
classifier also depends on whether the recognition goal is to find a single object or to find
multiple members of a class of objects. If the goal is to find a single item, no more than one
hypothesis should be verifed for each image, but if the goal is to find elements of a class
many hypotheses may be correct.

Goal-level classification is therefore unique. When a single hypothesis is required, run-
time clasifiers that compare hypotheses directly to each other and select the best are used.
SLS should then be viewed as a system for generating goal-level hypotheses, which are then
classified by another system. When multiple goal-level hypotheses may be correct, decision
trees or other classifiers that do not compare hypotheses directly to each other are more

apprpriae.

2.3.5 Capabilities and Limitations of Recognition Graphs

So far, object recognition has been described as a "bottom-up" process starting with an
image and ending with an abstract representation of an object. Although we will continue
to use bottom-up terminology, it should be noted that recognition graphs can also represent
"top-down' strategies and even mixed bottom-up and top-down strategies. "Bottom-up"
strategies are created from TPs that create more abstract hypotheses from less abstract
ones; top-down strategies are constructed from TPs that reduce abstract hypotheses to
more concrete ones. Many strategies are mixed, using TPs that produce both more and less
abstract hypotheses. The only constraint enforced by SLS on recognition graphs is that the
knowledge base should not contain any loops, where hypotheses of type A are created from
hypotheses of type B and vice-vea
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At the same time, recognition graphs are not capable of representing strategies based on
relative strengths of hypotheses. Traditional blackboard systems can use heuristic schedulers
that apply a knowledge source to the top N hypotheses at a level of representation, but
such strategies cannot be embeded in recognition graphs. Recognition graphs can represent
strategies that apply VPs to hypotheses with specific sets of features, but not to the N
best hypotheses in an image. (This is why a minimum distance classifier was introduced in
the last section to enforce the constraint that only one goal-level hypothesis by verified per
image-)

In general, "N-best" control strategies are inappropriate for multiprocessors and massively-
parallel MIMI machines. To execute an uN-best" strategy, all hypotheses of a given typ
must be generated, and all the processors must communicate in order to compare the relati,
strengths of hypotheses. Only then can processing on the best hypotheses continue. "N-
best" strategies are well-suited to sequential or lock-step parallel processing environments,
but not multiprocessing. The recognition graph representation therefore does not support
strategies that make control decisions based on the relative strengths of hypotheses.

Instead, SLS's strategies compare run-time hypotheses to training-time hypotheses. If
training-time hypotheses with similar features led to correct goal-level hypotheses, then a
hypothesis is pursued further; if not, it is rejected. SLS strategies base their control decisions
not on the relative strengths of hypotheses from a single image, but on the relative strength of
run-time hypotheses when compared to the larger pool of training hypotheses. By avoiding
N-try omparisons of run-time hypotheses (but not the low-order comparisons computed by
multiple-argument VPs), SLS strategies avoid the synchronisation delays and communication
overhead inherent in "N best" strategies.

3 SLS: Algorithms

At the heart of SLS are algorithms that create recognition graphs from training images. As
shown in Figure 7, recognition graphs are created by a three step process of exploration,
earing from ezepks, and optiviaio. Speaking in general terms, the exploration al-
gsithm generates examples of how correct, goal-level hypotheses can be generated from
images through sequences of intermediate representations, and develops statistical charac-
terisations of VPs. Generalizing from these examples, the learning from examples (LFE)
algorithm infers efficient methods for generating goal-level hypotheses from images. Finally,
the optimization algorithm builds a decision tree for each level of intermediate hypotheses
that minimizes the expected cost of verification (or rejection). Together, these algorithms
produce recognition strategies that minimize the expected cost of satisfying recognition goals.

3.1 Exploration

The exploration algorithm applies visual procedures to training images and to intermediate-
level hypotheses generated from training images. It begins by applying TPs to training
images, producing intermediate hypotheses such as regions, lines, and points. The properties
of these hypotheses are measured by FMPs, after which the hypotheses are transformed by
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Figrep. 7: The Three Algorithms of SLS. This figure expands the left-hand side of" Figure 1 to
show the sequence of algorithms in SLS. The eq~Le atoni algorithm creates examples of goal-
level hypothesis generatio ad builds up statisical characteri0ations of TP performance.
The fObjec et npe algorithm selects TPs for transorming hypotheses from one level

of represeatatiom to the next and selects which features indicate that a hypothesis should be
transformed, and which suggest that a hypothesis should be abandoned. The optimization
algorithm builds decision trees at each level of representation that minimide the expected
cast of verificato n.
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TPs into still more abstract hypotheses. Exploration continues in this way until the supply
of hypotheses that can be generated from training images is exhausted.

There are two reasons for exhaustively exploring training images. The first is to gen-
erate examples for the LFE algorithm. The training signal distinguishes correct goal-level
hypotheses from incorrect ones, but it does not indicate how goal-level hypotheses should
be generated from images through sequences of intermediate-level hypotheses. To learn how
to generate goal-level hypotheses, SLS needs examples of how hypotheses that match the
training signal can be generated. It also needs examples of intermediate-level hypotheses so
that it can learn to distinguish intermediate-level hypotheses that lead to correct goal-level
hypotheses from those that do not. Because the exploration algorithm exhaustively generates
all possible hypotheses from training images, some of the goal-level hypotheses it generates
will match the training signal, assuming there exists a strategy capable of satisfying the
recognition goal. The histories of how these correct goal-level hypotheses were generated
through sequences of intermediate hypotheses provide examples of how a recognition goal
can be satisfied.

The second reason for exploring images is to estimate the costs and benefits of VPs
in the knowledge base. In order to optimize the verification process, SLS has to know the
probability of a feature given a hypothesis, as well as the expected cost of measuring that
feature. Unfortunately, SLS's knowledge base does not include any information about the
costs of FMPs or the probabilities of each discrete feature value. SLS therefore has to build
up a statistical- characteriation of the FMPs by applying them to training images.

3.1.1 Discretizing Continuous Features

Once the training images have been explored, the exploration algorithm collects and pro-
cones the data. The first step is to map continuous features into discrete feature ranges.
O, when the semantics of a feature are well understood, continuous features are
convert into discrete values according to an explicit mapping in the knowledge base. More
often, though, the relationships between features and the recognition goal are not well un-
derstood, and the discrete feature ranges are derived from the exploration data.

idealy, a fenture's ran should be divided so that the resulting discrete feature values
distinguish "good hypotheses from 'bad' ones. In the context of SLS, an intermediate-
level hypothesis is 4goodw if it leads to correct goal-level hypotheses and "bad" otherwise.
Good interme level hypotheses are identified by finding correct goal-level hypotheses
and tracing back their origins to find the intermediate-level hypotheses used to generate
them. Intermediate-level hypotheses that lead to correct goal-level hypotheses are labeled
as "corect', while others are labeled *incorrect".

Once hypotheses have been labeled as either correct or incorrect, SLS histograms the
correct hypotheses at each level of representation, and divides the histograms of each property
into overlapping ranges about the median. Each range is defined to include a fixed percentage
of the samples, as shown in the top half of Figure 8. For some features, the optimal value is
known to be either the minimum or maximum value, in which case the ranges are asymmetric;
each map contains the optimal value plus a large enough delta to include a fixed percentage
of the samples, as shown in the bottom half of Figure 8.
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Figre 8: Disicretiuing Continuous; Features. Fleature ranges are determined by histogramn
c=.e hypotheses and keleting ranges about the median that include a fixed percentage of
the samples. In the example shown at the top, 50% of all positive samples fall in the range
i, and 75% Wa in f2. (f3 is a range 5% larger than needed to cover all positive samples;

the extsa5% is a heuuistic fudge factor".) If the optimal value of a feature is known to be
its minimum cc maximum value, then the ranges are calculated from the optimum value, as
shwn at the bottom.
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There are many other, more sophisticated, methods for dividing continuous features into
discree ranges, and no claims for the optimality of this method are made. (See Quinlan
[271 for another approach.) One advantage of this method, however, is that the resulting
discrete values can be interpreted probabilistically. In Figure 8, for example, the conditional
probability of a correct hypotheses having feature f1 is .5; similarly, the probability of f3
is 1.0. SLS does not currently use this information, but it is helpful in trying to build an
intuitive understanding of strategies learned by SLS.

3.1.2 Characterizing FMPs

Once the data has been discretized, it must be converted into a form that can be used by the
LFE and optimization algorithms. The LFE algorithm, in order to learn efficient methods
for trasormi images into goal-level hypotheses, needs a record of 1) the origin of every
hypothesis genmrt during exploration, in terms of the TP(s) that created it and lower-level
hypohese used as arguments, and 2) the discrete features describing those hypotheses.

The optimisation algorithm, on the other hand, needs statistital models of FMP per-
foirmance. Unfortunately, statistical models cannot be inferred directly from the exploration
data, becaue the probabilities and costs associated with features depend on the quality of
the hypotheses being measured. The exploration algorithm, which exhaustively explores the
space of possible hypotheses, gnerates more hypotheses of lesser quality than SLS's run-time
recogition strategy will. (After all, SLS's strategies explicitly minimise the number of false
hypothesenemrated.) The exploration hypotheses are in essence drawn from a different
stattical ditn'bution than the run-time hypotheses will be.

As a result, although PMP performance chara is conceptually part of the
explorati algrithm, it is delayed until after the LPE algorithm has been run. The results
of learning fron examples we used to prune the exploration data, keeping those hypotheses
that would be geaate by the run-time stratey, and removing those that are merely
artifacts a( exhaustiv exploration.

Once the exploration data has been pruned, the remaining hypotheses are used to char-
acterise the perfarmance of VPs. In particular, the exploration algorithm estimates:

" Expected Cost (VP, F), the expected cost of applying a VP to a hypothesis with
the feature values F;

"* Feature Ukelihood (FMP, ft, F), the likelihood of a FMP returning feature value
fi when applied to a hypothesis with feature values F.

In general, these values are estimated from applications of FMP to similar hypotheses during
training. When an insufient number of similar hypotheses (i.e. hypotheses with feature
values F) are generated during training, the dependency on F is dropped and the values are
estimated across all hypotheses.

3.1.3 Making Exploration Efficient

Although SLS is designed to maximise run-time, rather than compile-time, efficiency, there
may be situations where exhaustively exploring the training data is not feasible. In such

21



cases, the cost of exploration can be heuristically reduced by not exploring hypotheses that
do not satisfy constraints derived from the goal-level solution, For example, if the recognition
goal is to recover the three dimensional position of an object, any region hypotheses that do
not overlap the object's projection can be rejected without being explored further. Similarly,
points, lines, planes, and other types of geometric hypotheses can be rejected if they fail
to overlap the correct solution or its projection. In this way, the combinatoric nature of
exploratio is damped, but the positive examples needed by the LFE algorithm are still
generat.ed

The disadvantage of this heuristic is that negative examples are used in SLS 1) by
the LFE algorithm, to select the minimal cost DNF subterm (see Section 3.2.3), and 2) to
estimate the costs and probabilities associated with features. At the risk of a less efficient
strateg, both tasks can be accomplished by exploring only a subset of negative hypotheses
and extrapolating the results. However, we have not used this heuristic, preferring instead
to explore the training data exhaustively, because its precise effects are hard to analyze.

3.2 Learning from Examples (LFE)

SLS's learning from examples (LFE) algorithm analyses correct hypotheses produced dur-
ing exploration and infers from them an efficient scheme for generating accurate goal-level
hypotheses. The approach refdects the idea that recognition is a series of transformations
interleaved with verifations. By looking at the histories of how correct hypotheses develop,
SLS learns how to generae goal-level hypotheses from images through series of intermediate-
level hypotheses. At the same time, it learns which features of intermediate hypotheses
indicate that a hypothesis should be pursued, and which imply that a hypothesis should be
abandoa•

3.2.1 Learning from Examples

In the machine learning literature, the term learnifn frowm eamples refers to algorithms that
learn rules for evaluating examples. Following the terminology in the Al Handook [10],
leaning from examples problems are defined in terms of itstance spaces and rule spaces.
The instance space is the set of possible examples or intencs that might be encountered,
either during training or testing. The rule space is the set of possible inference rules for
evaluating instances. In general terms, learning from examples algorithms search rule spaces
for the best methods of evaluating instances.

In SLS's LYE algorithm, the task is to generate correct goal-level hypotheses from images
through sequences of intermediate representations. Instances are strings of hypotheses and
TPs that transform images into correct goal-level hypotheses. The rule space is composed
of sets of features and TPs: the features determine which hypotheses should be pursued at
each level of representation, and the TPs indicate how they should be transformed. The goal
of the LYE algorithm is to select sets of features (TP preconditions) and TPs that generate
a correct hypothesis for every object instance in the training set, while generating as few
false hypotheses as possible.
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3.2.2 Dependency Trees

Inside the LFE algorithm, instances of correct hypotheses are represented as dependency
bee,. A dependency tree is an AND/OR tree recording the TPs and intermnediate-level
hypotheses on which a goal-level hypothesis depends. For example, a correct 3D pose hy-
pothesis might have been generated by fitting a plane to a set of 3D line segments. If 0o,

the pose hypothesis is dependent on the plane fitting TP and the 3D line segments, as well
as the TPs and hypotheses needed to generate the 3D line segments, as shown in Figure 9.
In general, dependency is recursive, with 'AND' nodes in the tree resulting from TPs that
require multiple arguments (and are therefore dependent on more than one hypothesis), and
'OR' nodes in the tree occurring when more than one TP redundantly generates the same
hypothesis.

Po0-10

Liuue-fo-p"ae-l 7?T PoiW-0-pkaM-flt 7?

Sam4Jsss 1 -D.p 4i-W.19II
SWWm Mxhbq 7? Mahidag 7?

A I1nse*o2 R10Unes- 2Dpobi.

Fire 9: An example of a dependency tree showing the different ways that one correct pose
hypothsis can be created during trainng.

Ech dependency tree represents the different methods for generating a specific hypothe-
sis. In the example in Figure 9, pose-10 can be generated either by applying the line-to-plane-
fit TP or the poiant-to-plane-fit TP, but at least one of the two is required. Furthermore,
if the Ihat-to-plane-fit TP is used, it must be applied to 3D-lineset-l. Alternatively, if the
point-to-plane-fit TP is used instead, it must be applied to 3D-point-set-19.

Dependency trees like the one in Figure 9 apply to speciic hypotheses generated during
expklation. The first step in inferring a more generalized scheme for transforming images
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into goal-level hypotheses is to generalize the dependency trees by replacing hypotheses with
their feature vectors, as shown in Figure 10. The rationale for the substitution is that TPs
have preconditions associated with them that select the hypotheses to which they will be
applied. If a TP needs to be applied to hypothesis H to ensure that a goal is met, then only
features of H should be considered as preconditions for the TP.

OR

AND AND

(u-~ro~~im.p , AND (PI4"opkne-fir 7?, AND
Feetwes of3D-fiWamr-) Fewres of D-pouu-ser-)9)

(SwM" Match 7. (G•omenic Mafrci .77.
F*w, q• -in.-,-2. " F ,aw, olfD-pd.-o.4 .)
FAW a/JeR*gfI*a-vw.2)

Fiqgre 10: A generalized dependency tree created by replacing the hypotheses in Figure 4.3
With their feature values.

In gaene, a hypothesis is guaranteed to be created by any set of preconditioned TPs
that Ostiue its dependency troe. A dependency tree DT is satised by a set of TPs G
(with afiae preconditions P) if. 1) the root of Dl is an AND node, and every subtree of
DT is satisfed; 2) the root of DT is an OR node, and at least one subtree of DT is satisfied;
or 3) the root of DT is a W node with TP g and preconditions P such that g is in G and
the precouditions ofg either match or ae a supet of P.

3.2.3 LFE: A DNF-based Algorithm

The algorithm for finding optimal sets of TPs and preconditions is deceptively simple:

1. Convaet the generalized dependency tree ofa correct goal-level hypothesis to disjunctive
normal form (DNF)S.

2. For every other correct goal-level hypothesis:

(a) Convert its Seneralixed dependency tree to DNF.

T- hse djucive acntal for a( a Uia ezatam a & a OR a( ANDs of monomial eipresioms, for
ezamp (A A B) V (A A C).
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(b) "AND' together the new DNF expression with the previous DNF expression.

(c) Convert the resulting 'AND' tree to DNF`.

3. Select the conjunctive subterm that generates the fewest total hypotheses.

By the logic of the dependency relation, the TPs and preconditions in any conjunctive sub-
term of the final DNF expression are sufficient to re-generate the correct goal-level hypotheses
from the training images. By selecting the minimal term, SLS chooses the best method for
generating correct hypotheses.

AND/OR dependency trees are converted to DNF by a standard algorithm that first
converts every subtree to DNF and then either merges the subterms, if the root is an OR
node, or takes the symbolic cross product' of the subterms, if the root is an AND node. If a
T]P is ANDed with itself when taking the cros product, its preconditions are the intersection
of the preconditions of the two instances being ANDed.

This basic algorithm is altered slightly to improve efficiency. Because SLS seeks to find
the minimal term (measured as the number of hypotheses generated) of the DNF expression
rather than every turm, any conjunctive subterm that is a logical superset of another can be
pruned, reducing the total number of terms considered. A second modification is to sort the
correct goal-lkvl hypotheses according to the se of their dependency trees and to iterate
in step two from the simplest dependency trees to the most complicated. This reduces the
sin o the interim DNF expressm without affectiag the inal DNF expression.

3.3 Graph Optimization

As was statd gier, recopition grapks interleave verihcation and truandormation, using
FIWs to mesuew properties of hypotheses and TPs to tmanorm them to higher levels of
sepreseatation. By building dependency trees from the training samples, converting them
to DNF aad pkJkng the mn=m subterm, SLS learned which TPs to use to transform
hypotheses fivm one levl to the next. Just as important, it learned which preconditions a
hypothesis must meet befor it should be transfrmed. These preconditions are the subgoals
Q( th recognition pem C at iat medi levels of representation.

The optmizatio algorithm optimism hypothesis verification by building decision trees
for each level of representation that minimis the expected cost of reaching a subgoal or,
coversely, of deciding that a hypothesis cannot satisfy a subgoal and should be rejected. The
decision trees we constructed by Art building a graph representing all possible sequences of
FMP application, and then optimizing the graph by determining the options at each choice
mode tha minimise the overall cost of recognition, and removing all other options (although
when multiplegment FMPs we used, several options may be left at a choice node, sorted
is tarms at desirability; an Section 2.3.3). The Anal result is a decision tree at each level of
r epr tatiou that minimises the expected cost of verification.

1~~egls*,, is al*db.a qsdnst to ib. "Ow uwog ep ~ofm@ ANDia &D the depeadeacy
omw Mqsdm &W auwtag the ghmk to DNV. lovew, Awvfively s•ag e•c snw depeadeacy tree to

"Symbelk am pdnmf: {A, D) x (C. D) = {AC. AD. OC. }D).
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3.3.1 Graph Layout

For each level of representation, a directed acyclic graph is constructed representing all
possible sequences of FMP applications. The graph starts from a single knowledge state,
corresponding to a newly generated hypothesis for which no features have been computed.
The start state, like all knowledge states, is a choice node in decision tree terminology, since
a control progrmn gets to choose which FMP to apply to hypotheses in this state. FMP
applications nodes are added for every FMP that can be applied to a hypothesis in the
start state. These FMP applications lead to new knowledge states, which in turn have more
FMP applications attached to them, and so on. The expansion of the graph continues until
it reaches either a subgoal knowledge state or a knowledge state that is incompatible with
every remaining subgoal (i.e. a failure state).

For example, Figure 11 shows the initial graph for a level of representation with two
FMPs and a subgoal of {al,bl). Graph construction begins with the start state and expands
by adding a chance state for each FMP. The FMPs lead to a total of five new knowledge
states, but three of them are failure states that are incompatible with the subgoal {al,bl}.
The other two states each have one more FMP to be applied, leading to four more knowledge
states, one of which is the subgoal state and three of which are failure states.

More formally, we refrr to subgoal states and failure states as the terrainal states for
each level of the recognition graph. The cost of promoting a hypothesis from knowledge state
a to a terminal state is called the Expected Decision Cost (EDC) of knowledge state n, and
the expected cost a( reaching a terminal state from state n using FMP v' is the Expected
Path Cost (EPC) of n and v. Since features are discrete, we denote the possible outcomes
o( a FMP v as a set R(v), and t-e probability of a particular feature value f being returned
as PUfIV, a),f R(u).

The EDC's a( knowledge states can be calculated starting from the terminal states and
working backward through the recoguition graph. Clearly, the EDC of a subgoal or failure
state is saw.~

EDC(n) = 0, n E {terminrl states}.

If we limit ourselves to single-argument FM[Ps, the expected path cost of reaching a
te inal state from a FMP application node is:

EPC(n, v) = C(v)+ • (P(fin,v) x EDC(nU f))
JER(,)

whre a is a knowledge state expressed as a set of feature values, n U f is the knowledge
stake that results from PMP v returning feature value f, and C(v) is the estimated cost of
appligV.

The EDC of a knowledge state, then, is the smallest EPC of the FMPs that can be
executed from tha state:

EDC(n) = mi (EPC(n, v))
E•v P(wI)

v is an aw•• ,wd abbrevisuio for a feature msuzemeat procedure, but f will be used for feature values
OWp Pwould look WN a probability vaud. Siace FMPs ae a subdlass of VPs, 9 is therefore used.
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Level of ReprsentMtlon: X
Cost = 1.2 {-l,bS)

B EDC = 0.0

Costn- 1 .0 3 EED = 1-.0 EP=Cs 1.0

0 -33IOC I(alb2)

f )PC .67 EDC = 0.0
D - 0.0

PCm 1.233 EM 1.0O P . D .

Figur 11: An initial dec:ision graph. Choice nodes, shown as rectangles, correspond to
knowledge states of a hypothesis. Chance nodes, shown as ovals, represent FMP applications.
Starting from an empty knowledge state, the system adds a chance node corresponding to
each FMP. Since FMPs measure feature values, they lead to new knowledge states, where
new FMAPs can be selected. The graph expands until it reaches either a verification state, or
a state that is incompatible with the features of a verification state.

27

3 "D 1-0I



where VP(n) is the set of FMPs applicable at node n. The minimal-cost decision tree is
created by making a single pass through the directed acyclic graph, starting at the terminal
nodes are working backward toward the start state. At each knowledge state, the pruning
process calculates the EPC of every FMP that can be applied from that state, and removes
all FMP application nodes except the one with the smallest EPC. The final result is the
minimal-cost decision tree.

Figure 12 shows the result of pruning the initial graph shown in Figure 11. Starting
at the terminal nodes and working backward, the first choice states the pruning algorithm
considers are al and bl. These states have only one option each, however, so selecting the
minimum-cost option has no efect. The next choice node encountered is the start state ,
where there are two options, since the system can choose to compute feature A or feature B.
However, as depicted in Figure 11, the expected cost (EPC) of verifying hypotheses if feature
B is computed first is 1.53, while the cost of verifying hypotheses by computing feature A
first is only 1.4. Consequently, the optimization algorithm prunes option B from the start
node in Figure 11, leaving the optimized decision tree shown in Figure 12.

Level of Repemsentaton: X
Coot = I12

------Cost = 1.0 EC= I• EP = 1 DC - 0.00

(Sunl swea) EP= 1.4A EDC - 0.,0

ED)C a 0 ,0 (al~bl)I

EDC - 0.,0

Figure 12: A pruned decision graph. This Figure shows the graph depicted in Figure 11
after it has been pruned by the graph optimization algorithm. All actions which either do
not lead to the subgoal state or which are not on the most efficient path to the subgoal have
been removed.

The equations above made the simplifying assumption that all FMPs were applied to
individual hypotheses. The analysis gets more involved when we permit multiple-argument
FMPs, such as FMPs that measure spatial or other relations between hypotheses. The prob-
e1m is that the equations above implicitly assume that if FMP v is an option at knowledge
state n, then v can be applied to any hypothesis reaching state n. It is always possible, for
example, to measure the color of a region hypothesis or the length of a line hypothesis. With
multiple-argument FMPs, however, this assumption is no longer valid, since whether or not
a multiple-argument FMP can be applied to a hypotbesis at a knowledge state n depends
on whether the other arguments of the FMP can be filled (see Section 2.3.3).
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As a result, we introduce a new term P.,,(vln),v E VP(n), the probability that v can
be applied to a hypothesis in state n. (For single-argument FMPs, P.,p(vin) = 1,Vv E
VP(n).) In addition, because multiple-argument FMPs v may be applied more than once
to a hypotheses by varying the other arguments, we must consider the possibility that a
FMP may return a feature that had already been computed (or equivalently, may return
nothing), with the result that a FMP application may not change a hypothesis' knowledge
state. Under these conditions, we do not talk about the expected path cost of applying a
FMP from a knowledge state (i.e. EPC(n, v)), but rather the expected path cost of applying
a FMP from a knowledge state with a set of alternate FMPs V in reserve, in case v cannot
be applied or fails to calculate a new feature.

Despite the changes, the EDC of a subgoal or failure state is still zero:

EDC(n, V) = 0, VV; n E {terminai states}.

In addition, because a VP application may not advance a hypothesis to a new knowledge
state, we must consider the possibility of "running out" of FMPs:

EDC(n, 0) = 0, Vn.

However, the expected path cost of reaching a terminal state from a FMP application
node with V other FMPs in reserve is now:

EPC(nv, V) = P.,(vin) C(kv) + (P(f Inv) x EDC(n U f, VP(n U f)))
I IERM.19"v

+ F (P(fIi, v) x EDC(nV))]
JE-R(V),IC-nI

+ (1 - P.p(vln)) x EDC(n, V - v)

The EDC of a knowledge state is still the smallest EPC of the FMPs that can be executed
from that state. Minimizing the EDC of a knowledge state is no longer sufficient, however,
for generating the optimal strategy. The benefit of a FMP application is the sum of the
beneft it provides to each of its arguments, and the most efficient decision tree is created
by selecting the FMP at each knowledge state with the highest ratio of total benefit to cost.
We refer to this ratio as the gain of a FMP:

Ga,(,,,,,...,,,.,) = -C(V,ni, ...n, ,.) + 1 1: (P(fIv,,n,)EDC(nU F.) - EDC(n))
" JIF,.

where F. is the set of feature values that might be returned by FMP v for argument n.

3.3.2 Estimating Total Cost

The equations above establish a mutually recursive definition of the expected decision cost of
a knowledge state. The EDC of a knowledge state is the EPC of the optimal FMP application
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from the state; the EPC of a FMP application is the expected cost of applying the FMP
plus the expected EDC remaining after the FMP has been applied. The recursion bottoms
out at terminal nodes, whose EDC is zero. Since every path through the object recognition
graph ends at either a subgoal or a failure node, the recursion is well defined.

Furthermore, the total cost of recognition can be estimated from the EDCs of start
states and the expected costs of the TPs selected by the LFE algorithm. The EDC of the
start state for a level of representation estimates the expected cost of verifying or rejecting
hypotheses at that level. By estimating the total number of hypotheses generated at each
level by the preconditioned TPs and multipying it by the EDCs of the start states, the total
cost of verification can be estimated. Since the expected number of times a TP will be
executed can also be estimated from the LFE algorithm's results, the total expected cost of
recognition can be obtained easily.

4 Experiments

We present three examples of L7S learning recognition strategies. In the first exercise, SLS
learns a strategy for finding the (2D) position of a tree in images taken from an approximately
known location. The second demonstration goes one step further, as SLS learns a strategy
for determining the 3D pose of a building, again from an approximately known viewpoint.
Finally, in the third exercise, SLS learns to recognize another, more complex building from
an arbitrary position on the ground plane.

In addition to demonstrating that SLS can learn recognition strategies for complex vision
applications, these exercises are designed to show that SLS can recognize both natural and
man-made objects, can recognize them from either known or unknown viewpoints, and can
do so in either two dimensions or three. SLS is therefore general enough to support a wide
range of vision applications.

4.1 Implementation Notes

For these demonstrations, SLS was implemented in Common Lisp for a TI Explorer II Lisp
Machine, as was the library of visual procedures. Hypotheses were tokens in ISR, a database
system designed for computer vision applications (6]. All pictures were taken with a 35mm
camera and digitized on an Optronix Colormation C4500 Digitizer/Photowriter.

The demonstrations are unfortunately limited by the inefficiency of the implementation.
No effort was made to optimize either the visual procedures, which account for most of the
source code, or SLS itself. As a result, exploring a single image can take on the order of
two hours. The rest of SLS's processing, including all of the learning from examples and
optimization procedures, takes approximately another hour. It was therefore impossible,
as a practical matter, to run experiments with more than about twenty training images,
particularly considering that lisp machines have no batch processing facilities.

Training set size in turn limits the robustness of the strategies SLS can learn. This is
particularly a problem in the third demonstration, where the task is to learn the 3D pose
of a complex object from an arbitrary viewpoint. Since the training set includes only a few
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examples from each generic view, the resulting recognition strategies are less robust than
those learned from twenty examples of a single view.

4.2 Tree Recognition from an Approximately Known Viewpoint

In the first demonstration, SLS learns a strategy for recognizing a tree from an approximately
known viewpoint. The strategy is not required to recognize all trees, but rather a specific
tree that serves as a landmark, in this case the tree behind the telephone pole in Figure 13.
The goal of the strategy is to determine the image position of the tree for triangulation, and
in particular the horizontal coordinate of the center of the tree.

4.2.1 Training Images

The training data is selected from a set of twenty-one images collected along a hundred foot
stretch of a footpath on the UMass campus. Figures 13 and 14 show the first and last images
of the sequence. The images were taken level to gravity (-1o) and from approximately four
feet above the ground, although the ground rises and falls over the course of the sequence.
The camera was also subjected to small rotations in pan from one image to the next. As a
result, the pose of the camera has four degrees of freedom, with large variations in position
in the ground plane and smaller deviations in camera height and pan.

4.2.2 Recognition Goal

Since the conceptual goal is to find the center of the tree, the user must specify a recognition
goal that conveys this information. One possibility is to represent tree projections as image
regions, with the centroid of each region representing the center of the tree. If the tree is
partially obscured, however, the centroid of the region will not correspond to the center of
the tree. A better representation for determining the center of a tree is to represent the
boundary of a tree's projection in the image as a parabola, with the locus of the parabola
corresponding to the center of the tree, as in Figure 15. The selected recognition goal is
therefore to generate and verify parabola hypotheses whose locus is within three pixels of
the projected center of the tree. The training signal was the position of the center of the
tree in each image, as determined interactively by the user with a mouse.

4.2.3 Testing Methodology

Because of the relatively small size of the training set, SLS was tested with a "leave one out"
methodology, in which strategies are trained on twenty images and tested on the twenty-
first. The process is repeated twenty-one times, each time with a different image "left out"
of the training set and used as the test image. Each trial tests whether a strategy learned
over twenty training images satisfies the recognition goal on the twenty-first. In addition to
testing for robustness, the suite of twenty-one trials also tests SLS's ability to predict the
reliability and average cost of its strategies.
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Figure 13: The first of twenty-one training images. The images were taken along a hundred-
foot section of the path, with the camera level to gravity.
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Figure 14: The last of twenty-one training images. The pose of the camera has four degrees
of freedom, with large variations in position in the XZ (ground) plane and small differences
in camera height and pan.
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Figure 15: Representing the 2D projection of a trees as a parabola in the image. This
figure shows a piece of the image in Figure 14, including the landmark tree, with a parabola
hypothesis representing the location of the tree.
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4.2.4 The Knowledge Base

The two-dimensional tree recognition task has the simplest knowledge base of the three
exercises. Apart from the images themselves, only a handful of visual procedures and three
types of representations - regions, sets of regions, and parabolas - are used. Figure 16 is an
idealised depiction of the tree recognition knowledge base. The lowest two levels contain sets
of regions, with the bottom level holding image segmentations and the second level storing
sets of green, highly textured regions. The third level holds region hypotheses that have
been pieced together from the sets of fragmented regions on level two, while the fourth level
is for smoothed regions. Finally the top (goal) level is for parabola hypotheses, which may
have been fit to either the rough regions on level three or the smoothed regions on level four.

It is notable that sets of hypotheses can be hypotheses themselves. One motivation
for reasoning about sets is that sets may have properties not possessed by any of their
members. Although this is not a factor in tree recognition, upcoming exercises will reason
about pencds of lines, which are sets of lines that meet at a common point of intersection.
The so-called "vanishing point" is a property of the set of lines that is not a property of any
of the individual line segments. The other reason for using sets, and the one of concern here,
is efficiency. Although it is possible to segment the image and reason about every region
independently, doing so would generate several hundred hypotheses. It is far more efficient
to reason about the segmentation as a single hypothesis, and create TPs that select relevant
regions from it.

4.2.5 Relability Results

The most basic question concerning SLS is whether the strategies it learns can be trusted
to satisfy recognition goals. As was mentioned earlier, in the tree recognition task SLS was
given the goal of learning to find the image position of a tree to within an accuracy of three
pixels. In twenty-one separate trials, SLS learned strategies for generating parabolic tree
hypotheses, using a minimum distance classifier to verify goal-level hypotheses.

In each trial, SLS was trained on twenty images and tested on a single image. In general,
strategies learned by SLS generated good hypotheses in eighteen of the twenty-one trials, for
a success rate of 86%. The minimum distance classifier selected a correct hypothesis from this
pool of goal-level hypotheses in seventeen of the eighteen cases for which correct hypotheses
were generated. Overall, therefore, the system was able to satisfy the recognition goal by
generating and verifying a correct goal-level hypothesis in seventeen of the twenty-one trials,
or 81% of the time.

Table 4.2.5 summarnses the system's performance. The first three rows record SLS's
performance in generating goal-level hypotheses. For each trial, the top row records the
error in the best hypothesis generated, the second row shows how many goal-level hypotheses
were generated, and the third row records how many of those goal-level hypotheses were
correct to within the accuracy threshold of three pixels. The last two rows include goal-level
classification, and thus present the system as an end-user would see it. The fourth row shows
the error in the hypothesis selected as the best hypothesis by the minimum distance classifier,
while the fifth row shows the system's confidence in its result in terms of the normalized

35



TREE KNOWLEDGE BASE
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Figure 16: The tree recognition knowledge base. Feature measurement procedures (FMPs)
are shown on the left hand side, while transformation procedures (TPs) are shown on the
right. Every VP is shown at the level of representation of the hypotheses to which it can be
applied.
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euclidean distance in feature space between the best hypothesis and the learned prototype.

The third row of Table 4.2.5 emphasizes the extent to which SLS learns redundant
strategies. The VPs in SLS's library - indeed, the algorithms in any computer vision toolkit
- are prone to failure. To be robust, therefore, SLS must learn strategies that are redundant,
so that if some VPs fail, others will still recognize the object. SLS minimizes redundancy
in its strategies as much as possible while still successfully recognizing the object in every
training image.

When learning to identify trees, SLS generally included all three parameterizations of the
morphological smoothing TP, to ensure that at least one of them will produce a smooth region
with a distinct peak at the center of the tree. In thirteen of the twenty-one trials, all three
parameterizations produce quality regions, resulting in three correct parabola hypotheses.
In four trials, however, one of the smoothing TPs failed to produce a region with a peak that
the parabola fitting TP could identify, so that only two correct hypotheses were produced
for those trials. Even more significantly, in trial eleven, two of the smoothing TPs failed,
producing just a single correct hypothesis and demonstrating that including three smoothing
TPs was necessary.

Trials fourteen, nineteen and twenty, on the other hand, show that SLS's strategies can
fail, despite their redundancy. In these three trials, and only in these three trials, SLS learned
strategies that included just two ..,ioithing TPs. An a posterioni analysis shows that for
three of the training images, only one of the smoothing TPs leads to a correct hypothesis.
(For all other training images, at least two of the three versions of smoothing generate high-
quality hypotheses.) As a result, on the trials in which one of these images was left out of
the training set, the most efficient strategy for satisfying all of the examples included in the
training set was to use only the other two versions of smoothing in the strategy. Of course,
in a "leave one out" testing scheme, the image not included in the training set is the one
used for testing, so the learned strategy failed on these three tests.

4.2.6 Efficiency Results

Table 4.2.5 addresses the robustness of the strategies learned by SLS, but not their efficiency.
Table 2 shows SLS's expected run-time (in seconds, rounded to the nearest whole second)
for the strategy learned in each trial as well as the actual run-time when the strategy was
applied to a test image. On any given trial, the discrepancy between the predicted and
actual run-times is quite large. On average, however, the predicted run-times are within
one percent of the actual run-times. This reflects the average-case nature of expected costs.
The actual cost of recognizing an object in an image depends critically on the contents of
the image, but as long as the training images are indicative of the test domain the average
cost of recognition can be estimated. Indeed, it is remarkable the predictions were accurate
to within one percent. Another indication that the expected costs are accurate is that the
expected cost exceeds the actual cost in eleven on twenty-one trials, or almost exactly fifty
percent of the time.
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Table 1: Results of twenty-one trials of learning to recognize the image position of a tree, with
a minimum distance classifier for goal-level verification. The top row of the table shows the
error in the image poition (measured in pixels) of the best parabola hypothesis generated for
each trial. The second row is the number of goal-level hypotheses produced by SLS's strategy,
and the third row records how many of those hypotheses were within the accuracy threshold
of the recognition goal (three pixels). The fourth row shows the positional error (again in
pixels) of the hypothesis selected by the minimum distance classifier, while the bottom row
shows the normalized euclidean distance in feature space between the best hypothesis and
the object prototype learned by the minimum distance classifer. The averages of each row
are shown in the last column.

ria Best Hyp. 1Hy. Count f Cor. Count sel. Hyp. Distance
1 1.28 11 3 1.73 1.09
2 0.75 10 3 1.04 1.34
3 0.38 15 3 0.38 2.27
4 0.06 13 3 0.54 1.36
5 0.00 18 3 0.38 2.14
6 0.10 15 3 0.10 1.85
7 0.00 13 3 0.33 2.14
8 1.39 17 3 1.69 1.22
9 0.50 17 3 0.85 1.26
10 0.02 15 2 0.02 1.43
11 2.08 15 1 6.59 3.11
12 1.96 20 2 1.96 2.00
13 0.49 18 3 1.32 1.81
14 4.23 21 0 6.51 2.11
15 0.48 11 3 0.48 4.69
16 0.69 21 2 0.69 2.48
17 0.87 22 3 1.82 2.54
18 0.83 20 3 0.82 1.09
19 18.47 10 0 18.48 5.98
20 7.40 9 0 7.40 4.54
21 0.30 15 2 0.63 3.51

Avg. 2.01 15.5 2.291 2.56 2.38 I
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Table 2: Timing results for the twenty-one tree recognition trials. The first row shows the
expected cost (in seconds, rounded to the nearest whole second) of applying the strategy, as
predicted by SLS. The second row shows the actual cost. Although the difference between
expected and actual run-time for any given trial is quite high, the average expected run-time
matched the average actual run-time to within one percent.
trial 1i1 21 31 4 51 61 71 s8 1.9J_10 1 1111

•ExpCo 45914631463 44014501463 4601452 4511458 I459
Act. Cot 242 255 269 703 S3 269 284 559 520 315 1350
trial 12 13 14 15 16 171 181 19j 201 211 Avg. 11

Exp. Co t451 454 1701-1-4651 44 1 4" r 5 331 1335 430 45_
Act. Cos 1436 1420 1824 301 1627 626 649 1211 1567 626 145711

4.3 Building Recognition from An Approximately Known View-
point

In the second demonstration, SLS learns to recognise the Marcus Engineering building,
which is the red brick bul'ding immediately to the left of the tree in Figures 13 and 14. This
time, however, the goal is to determine the three-dimensional location and orientation of the
building relative to the camera, rather than the image position of its projection. By finding
the three-dimensional pose of an object relative to the camera, recognition strategies can
determine the position of a mobile vehicle from a single landmark, rather than having to
triangulate among multiple landmarks, thus permitting landmark-based navigation in barren
domains with few landmark%, or in environments that are only partially modeled.

4.3.1 Training Images

The strategies for recognizing Marcus are learned from the same set of training images that
wer described in Section 4.2.1, including the images in Figures 13 and 14. As discussed
there, the images display four degrees of freedom, three that involve the position of the
building and a fourth that determines it orientation. As before, SLS is tested by training it
on twenty images and testing on a twenty-first, a process that is repeated twenty-one times
until every image has been used as the test image.

The 'ground truth' positions and orientations of the building were determined by man-
ualy matching image points to model points and applying Kumar and Hanson's algorithm
(23] to determine the building's pose relative to the camera. The training signal is there-
fore composed of errorful pose estimates, rather than true positions. However, Kumar and
Hanson's results suggest that, with correct correspondences, their algorithm produces pose
estimates that are extremely accurate when compared to the relatively lax error thresholds
in the recognition goal (see next section). The estimated poses can therefore reasonably be
used as a training signal.
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4.3.2 Recognition Goal

The recognition goal for this exercise is to find the pose of Marcus Engineering relative to
the camera Pose hypotheses are represented as rotation matrices with translation vectors,
in the traditional

P'= RP+T

representation, where R and T are the rotation matrix and translation vector that transform
a set of points P in the model's coordinate system into a set of points P' in the camera's
coordinate system. Unfortunately, errors expressed in terms of R and T tend to be uxun-
tuitive, since if an object is rotated slightly about its center, this will be represented as a
rotation about the focal point, counteracted by a large translation'. It is helpful, therefore,
to express the error tolerances in a different representation.

Since the pose of the building has only four degrees of freedom, the tolerance thresholds
in the recognition goal are expressed in terms of scale, image position, and object angle.
These parameters reflect the fact that the pose of the building can be expressed as a vector
from the focal point to any known point on the building, plus a horizontal rotation about
the known point. (Remember that the building has no tilt or roll relative to the camera.)
Errors in the positional vector are expressed as an error in length, measured as a percent of
the true camera-to-object distance, and an error in position, measured as an angle (Since we
are interested in th2 magnitude of the orientation error, not its direction, this can be written
as a scalar.) Errors in the rotation of the object are also represented as an angle, this time
about the vertical axis.

The esrro thresholds for this exercise are that the position of the building must be correct
to within one degree of image angle and ten percent depth, and the orientation of the building
must be correct to within five degrees. These thresholds require that the hypothesized pose
be highly accurate with respect to the building's image position and reasonably accurate in
the budding's orientation, but only approximate in depth. Figure 17 shows an example of a
pose that satisfms these criteria, in this case the building pose identified by SLS's strategy
in the first of twenty-one trials (see Section 4.3.4).

4.3.3 The Knowledge Base

A knowledge base for three-dimensional recognition is considerably more complex than a
two-dimensional recognition know6edge base. As before, the knowledge base includes visual
procedures for generating and verifying region and region set hypotheses, although parabola
hypotheses are no longer needed. In their place, the knowledge base uses image point and
image line hypotheses, and sets thereof, which better represent the structure of a building.

The knowledge base includes many visual procedures for extracting and grouping two-
dimensional representations such as points and lines. Lines can be extracted using the
edge-linking algorithm of Boldt and Weiss 141, and regions can be extracted by the algorithm
described in Beveridge, et. al. [3). Regions that match an expected color and texture can be
selected from a region segmentation by a multivariate decision tree, as described by Brodley

'•iTn urn of( l. Counteracting translation is a function of both the extent of the rotation and the distance
beas th objet cute to the focal pent.
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Figure 17: A correct pose from one trial of the Marcus recognition strategy. The pose shown
here was generated and verified on the first of twenty-one trials, and is off by 1.8% in depth,
4.79 degre-s in the the orientation of the building, and 0.16 degrees in the image location of
the building.
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and Utgoff [5]. (This algorithm is included twice in the knowledge base with two different
parameterisations, one designed to select red brickface regions, the other highly textured
window regions.) Nearby regions can be grouped by a region merging TP, while another
TP groups lines that intersect a given region. Nearby lines that are parallel, collinear or
orthogonal can be grouped according to the relations defined by Reynolds and Beveridge
[28). (All of the grouping VPs are implemented using the facilities of the ISR database
system 16].) Image points are extracted either by finding trihedral junctions of lines, or by
computing the convex hull of a pencil of lines.

In addition, new representations capable of supporting three-dimensional reasoning are
introduced. Orientation hypotheses represent the orientation, but not location, of a plane
in space, while planar surface hypotheses specify both the orientation and location of a
plane. Most importantly, transformation hypotheses represent a coordinate transformation
from one coordinate system to another, represented as a rotation matrix and a translation
vector. Transformation hypotheses determine the pose of a modeled object by giving the
transformation from the object model coordinate system to the camera coordinate system,
and are the goal-level hypotheses in this demonstration.

Three dimensional hypotheses are generated and manipulated by geometric visual proce-
dures. Collins and Weiss [11] provide an efficient TP for grouping line segments into pencils,
which are sets of lines that meet at a common point of intersection. Vanishing point analysis
(11] infers the orientations of planes in space by assuming that the image lines in a pencil
are the projections of parallel lines in space. Another approach to inferring the orientation
of an object in space is to find trihedral junctions of line segments first, and then use the
perspective angle equations of Kanatani [22] to infer the orientations of the planes, assuming
the lines form right angles, like the corner of a building.

The distance from an object to the camera can be estimated when the size of the object
is known. In the case of Marcus Engineering, a wire-frame model of the object has been
built from blueprints, as shown in Figure 18. Two parameterizations of the scaling TP are
available in the knowledge base, one that estimates distance based on the apparent width of
a window and the estimated angle of the building face, and a second that estimates distance
from the height of the building using a direct inverse relationship of size to distance. (Note
that since the images have zero tilt, the orientation of the building face is not needed to
estimate distance from the building's height). Of course, since any two points on the object
model can serve as compile-time parameters to a scaling TP, many other parameterizations
of the scaling TP could be included in the knowledge base.

4.3.4 Reliability Results

Table 4.3.4 summarizes the results of twenty-one trials of learning to recognize the pose of
Marcus Engineering from an approximately known viewpoint. The right side of the table
shows the errors in the best goal-level hypothesis generated, even if this hypothesis was
never verified, while the right side shows the errors in the goal-level hypothesis verified by
the minimum distance classifier. The verified pose for trial number one, which is also the
best pose generated for that trial, was shown earlier in Figure 17.

Pose errors in Table 4.3.4 are measured in terms of the length and orientation of a vector
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Figure 18: A wire-frame model of the Marcus Engineering Building, copied from its
blueprints.

from the focal point to the comer of the building, and the rotation of the building. More
precisely, the error in the position of the building is measured as 1) the error in the distance
to the building, measured as a percentage of the true distance, and 2) the image position
of the building, measured by the angle between the true vector from the focal point to the
building corner and the estimated vector (labeled "Im Pos" in Table 4.3.4). The error in the
building's orientation is measured as the angle in the horizontal plane between the estimated
orientation of a building face and its true orientation (labeled "Rot." in Table 4.3.4).

The most striking feature of Table 4.3.4 is the result of trial sixteen. The strategy
learned by SLS in trial sixteen did not generate a single goal-level hypothesis, either correct
or incorrect, for the test image. An a posteriori analysis reveals that in twenty of the twenty-
one images, the corner of the building is marked by a trihedral junction of image lines. In one
image, however, noise eliminates one of the three lines. As a result, when the image without
the trihedral junction is removed from the training set and used as the test image, SLS
learns a strategy that relies entirely on finding trihedral junctions. The strategy does not
succeed in finding any trihedral junctions in the test image, however, and therefore generates
no goal-level hypotheses. Ironically, in the other twenty trials, the training sets include the
case in which trihedral junctiohs fail, and therefore the other twenty strategies all include
redundancy to account for the possibility of trihedral failure, and this redundancy is never
needed for the test images to which they are applied.

Trial sixteen is the only case in which the strategy learned by SLS fails to generate
a correct goal-level hypothesis, giving it a higher success rate at generating 3D building
hypotheses (95%) than 2D tree hypotheses (86%). This improvement can be attributed to
the geometric reasoning VPs, which in general are less ad hoc and more reliable than the
region-based VPs used in the previous exercise. In trials fifteen and twenty, however, SLS
verified the wrong hypothesis, giving it an over-all success rate of 86%.

4.3.5 Timing

Although the knowledge base for three-dimensional recognition is more complex than the
two-dimensional knowledge base, and involves several more levels of representation, SLS is
still able to predict the expected cost of its strategies accurately. Table 4.3.5 shows the
expected cost for each strategy, as well as the actual cost when the strategy was applied to a
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Table 3: Results of twenty-one trials of learning to recognize the pose of the Marcus Engi-
neering Building. The left side of the table shows the errors in the best goal-level hypothesis
generated for each trial, while the left side shows the errors in the hypothesis verified by
the minimum distance classifier. Errors are specified in terms of the parameters discussed
in Section 4.3.2, namely: 1) error in distance from the object to the camera, expressed as
a percentage of the true distance from the object to the camera; 2) error in image position,
measured in degrees; and 3) error in the building's orientation, measured in degrees.

Best Generated Pose Selected Pose
Trial Dist. Rot. Im Pos Dist. Rot. Im Pos
1 1.81 4.79 0.16 1.81 4.79 0.16
2 1.34 0.82 0.05 1.34 0.82 0.05
3 1.18 1.33 0.11 2.74 1.33 0.09
4 0.69 1.40 0.13 1.97 1.40 0.13
5 2.64 2.33 0.10 2.64 2.33 0.10
6 0.73 6.95 0.15 0.73 6.95 0.15
7 0.27 1.16 0.05 6.58 1.16 0.07
8 2.33 0.07 0.08 2.33 0.07 0.08
9 1.01 3.58 0.20 1.69 3.58 0.20
10 1.39 1.65 0.04 2.07 1.65 0.05
11 0.50 3.27 0.08 2.37 3.27 0.25
12 2.24 4.48 0.25 2.24 4.48 0.25
13 2.07 1.54 0.04 2.07 1.54 0.04
14 0.36 1.63 0.09 0.36 1.63 0.09
15 2.13 2.58 0.21 11.23 2.58 0.21
16 - - - - - -

17 4.44 6.21 0.13 4.44 6.21 0.13
18 1.07 1.75 0.09 1.77 1.76 0.16
19 0.41 3.83 0.07 1.07 3.83 0.07
20 0.92 2.50 0.03 14.64 2.50 0.03
21 1.18 4.95 0.13 2.26 4.95 0.13

44



Table 4: Timing results for the twenty-one Marcus Engineering trials. The first row shows
the expected cost (in seconds, rounded to the nearest whole second) of applying the strategy,
as predicted by SLS. The second row shows the actual cost.

Trial1 1J 21 31 41 5I 61 71 81 9 i l111
Exp.I 82.9 84.7 84.2 78.6 85.1 85.0 84.9 85.0 85.2 185.3 184.6
Act. 107.31 88.4 79.4 113.7 88.9 74.8 66.2 71.7 72.6 67.4 74.5
Trial! 121 13! 14 15! 16! 17( 18! 19j 201 21 Avg.jj
Exp. 1 86.2 1 85.1 85.4 83.2 61.3 79.6 85.5 84.9 80.1 85.7 83.0
Act. 61.4 89.4 73.2 82.7 45.5 62.3 74.4 69.2 76.6 57.4 79.3

test image. While the variation in total time from one trial to the next is quite high, the aver-
age is once again close to the expected cost, with SLS overestimating the cost of its strategies
by a mere 4.7 percent. Moreover, an a-posteriori analysis shows that SLS was highly accu-
rate in estimating how often each visual procedure would be executed. SLS's overestimates
were caused by VPs executing more quickly during testing than during exploration, due to
variations in paging.

4.4 Recognizing Buildings from an Unknown Viewpoint

The final demonstration shows SLS learning strategies for recognizing a complex object from
an unknown viewpoint. Despite its prevalence in the computer vision literature, viewpoint-
invariant recognition is not a common visual task. Contextual knowledge about objects and
viewers typically constrains the space of possible viewpoints, and even in this demonstration
we will make a few contextual assumptions consistent with images taken from an autonomous
vehicle, for example assuming that the camera is near the ground. Nonetheless, there are
many situations where the relationship between the viewer and an object is unknown, and
viewpoint-independent recognition strategies are needed. This demonstration was designed
to show that SLS can learn strtegies for this less common situation, too.

4.4.1 Training Images

In many respects, the training images for the final demonstration are similar to those of
the earlier tests. The images are monocular, color images taken perpendicular to gravity
(i.e., with no tilt or roll) from a few feet above the ground. But whereas the earlier images
were taken from the same general area and pointing in the same direction, the new images
were taken from random locations and orientations in a two hundred by three hundred foot
quadrangle. The one thing all ten images have in common is that they all include part of
the Lederle Graduate Research Center (LGRC), the L-shaped, multi-faceted building which
houses the University of Massachusetts Department of Computer Science. Because of the
differences in camera position and orientation from frame to frame, however, and because of
the narrowness of the field of view, the images contain diverse and sometimes non-overlapping
views of the building. Figures 19 and 20 show two of the ten images.
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Figure 19: One of ten images of the Lederle Graduate Research Center (LGRC). The images
were taken from random positions in the courtyard behind the building.
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Figure 20: Another image of the Lederle Graduate Research Center (LGRC). Not only do
the images of the LGRC view the building from different angles and at different scales, they
also image different parts of building.
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4.4.2 Recognition Goal

The recognition goal for this demonstration was to recover the position and orientation of
the LGRC relative to the camera, plus or minus ten percent in scale, one degree in image
position and ten degrees in pan angle. Ground truth positions for the LGRC were estimated
by selecting correspondences between image points and points on a wire-frame model of the
LGRC extracted from its blueprints. Kumar and Hanson's algorithm [231 was then applied
to the hand-selected correspondences to establish estimates of the position and orientation
of the LGRC in each image, estimates which served as a training signal. Figure 21 shows a
correct pose hypothesis for the image shown in Figure 20, as generated in trial number nine.

Figure 21: A correct pose from one trial of the LGRC recognition strategy. The pose shown
here was generated and verified on the ninth trial, and is off by 5.93% in depth, 4.81 degrees
in the the orientation of the building, and 0.11 degrees in the image location of the building.

4.4.3 The Knowledge Base

As one might expect, the knowledge base for recovering the pose of the LGRC is similar to
the knowledge base for recovering the pose of Marcus Engineering. The LGRC knowledge
base includes visual procedures for segmentation [3], region classification [51, line extraction
(4], grouping lines into pencils [11], vanishing point analysis (11], perspective angle analysis
[22], symbolic graph matching [29], and determining distance from scale.
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Table 5: Results of ten trials of learning to recognize the pose of the Lederle Graduate
Research Center (LGRC) from an unknown viewpoint. The right side of the table shows the
errors in the best pose hypothesis generated, whether or not this hypothesis was verified by
the minimum distance classifier. The left side of the table shows the errors in the verified
hypothesis returned to the user by SLS. Errors are measured the same way as in Table 4.3.4
and "cussed in Section 4.3.2.

Best Generated Pose Selected Pose
Trial Dist. Pan Im Pos Dist. Pan Im Pos
1 3.06 2.12 0.98 53.01 2.12 27.31
2 32.02 8.17 17.37 32.02 8.17 17.37

4 2.52 4.08 0.12 5.32 4.08 0.12

6 1.04 5.83 0.17 1.04 5.83 0.17

8 8.22 8.72 4.42 12.96 8.72 2.93
9 5.93 4.81 0.11 5.93 4.81 0.11
10 3.24 6.93 0.15 3.24 6.93 0.15

One. difference is that visual procedures for reasoning about shape are parameterized
using the wire-frame model of LGRC rather than Marcus. The other major difference be-
tween the two knd>wledge bases is that the Marcus knowledge base was built for a single view.
Consequently, whenever a significant point in the image is identified, it can be matched to
the upper left corner of Marcus. In this demonstration, on the other hand, there is no single
point on the building that is visible in all ten images. Instead, the knowledge base includes
the coordinates of three model points, corresponding to the left corner of LGRC, the top of
the stairwell and left corner of the housing for its air conditioning units, and tries to match
one of them in order to fix the image position of the building.

4.4.4 Reliability

As before, SLS was tested with a "leave-one-out" methodology, this time with nine training
images used on each of ten trials. Table 4.4.4 summarizes the results. As one would expect
with only nine training samples for a complex task, the strategies learned by SLS prove less
robust than in earlier demonstrations. In fact, it may be that robustness is inversely related
to training set size, since halving the number of training images doubled the rate of failure.

Of course, the major impetus behind this demonstration was to show that SLS can learn
to recognize objects from unknown, as well as known, viewpoints. The images in the test
set not only view the LGRC from different angles, but some of them are of non-overlapping
parts of the building. Nonetheless, SLS learns to recognize the LGRC partly by relying on
VPs such as vanishing point analysis that are not view dependent, and partly by exploiting
redundancy. In effect, SLS learns strategies that compensate for the multiple views by using
one set of techniques to find the left-hand corner of the building, another set to find the
stairwell, and yet a third set of techniques to find the right edge of the building. In fact,
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Table 6: Timing results for the ten LGRC trials. The first row shows the expected cost (in
seconds, rounded to the nearest whole second) of applying the strategy, as predicted by SLS.
The second row shows the actual cost. The large variations in expected cost from one trial
to the next are symptomatic of a learning algorithm that has not yet converged on a strategy
after only nine training samples, and therefore produces very different strategies from one
trial to the next.

Triall 1i 21 31 41 51I
Exp. 1175.6 178.3 120.2 223.7 232.9
Act. 195.0 168.4 155.8 133.7 80.7

Triall 61 7I 81 9 , 10 Avg.jI

Exp. 175.8 279.2 185.8 225.3 180.0 197.7
Act. 190.2 189.2 95.7 315.8 150.3 167.5

given that it has only a few examples of each view, it is remarkable that SLS did as well as
it did, generating correct hypotheses in five of the ten trials (50%), and verifying a correct
hypothesis in four trials (40%).

4.4.5 Timing

The lack of a sufficient training set impacts SLS's ability to predict the cost of its strategies as
much as its limits its ability to produce robust strategies. Table 4.4.5 shows the expected and
actual times for each trial, and unlike in previous trials the expected costs vary greatly from
trial to trial. (In the earlier exercises, only the actual costs varied.) This is symptomatic of
a learning strtaegy that has not yet converged on a consistent recognition strategy. Indeed,
the expected cost of the learned strategies varies by almost a factor of two demonstrating
that the strategy learned in one trial might be quite different from the strategy learned in
another. It is not surprising, therefore, that the average actual cost is 15.3% below the
average predicted cost across the ten trials.

4.5 Summary of Demonstrations

The demonstrations of two-dimensional and three-dimensional recognition from known and
unknown viewpoints presented here are meant to convince the reader that SLS is more than a
theoretical system, appropriate for recognizing abstract objects in synthetic images. SLS can
learn practical recognition strategies for finding known objects in complex images. At the
same time, these demonstrations are not intended as definitive experiments for testing the
strengths and weaknesses of the system. SLS clearly needs to be tested on larger training
sets, with more visual procedures, and under a wider variety of conditions. These tests
demonstrate SLS in action, but do not probe its limits.

Unfortunately, we do not currently have the facilities for thoroughly testing SLS. In
order to run exhaustive experiments, we need to collect large sets of images quickly and
cheaply, and to generate training signals for those images. We also need the computational
resources and disk space to be able to process and store hundreds of images.
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4.6 Conclusion

Work on the Schema Learning System was initially motivated by the needs of its predeces-
sor, the Schema System [12, 131. The Schema System used appearance models and object
relations to interpret complex natural scenes, and demonstrated how concurrent, special-
purpose processes can cooperatively interpret images by exchanging tentative hypotheses.
Unfortunately, it took so many hours of human labor to develop each schema that the Schema
System was essentially limited to toy domains. As members of the Schema System research
team, we were all too acutely aware of the cost of generating schemas and the limitations
that implied.

Faced with a similar dilemma, researchers on the SPAM project [25, 18] and in Japan
[24] sought to reduce the cost of knowledge base construction by building better tools and
programming languages. In essence, they tried to finesse the knowledge acquisition problem
by developing better software engineering tools to aid the human knowledge engineer.

We decided on a different approach. Rather than increase the speed with which knowl-
edge engineers can craft a knowledge base, we decided to take the humans 'out of the loop",
by building systems that automatically learn to recognize objects. This approach depends on
conceptualizing vision as a set of evolving skills rather than a single, fixed matching process.
Each viewer, according to this paradigm, develops recognition strategies in response to its
environment, optimizing and refining those visual skills that are used most often.

Of course, it would be arrogant, not to mention misleading, to imply that SLS as de-
scribed here meets this goal. SLS is just a small step on which others, hopefully, will build.
It would be nearly as arrogant to imply that SLS was, in any meaningful sense, "finished".
This work argues for the importance of learning recognition strategies from libraries of visual
procedures and presents one system for solving this problem, but there is still much work
to be done on learning in vision before it becomes a reality. Happily, this line of research is
being continued under a new contract from ARPA and Rome labs (see below).

5 Contributions (So Far)

This report presents a complete and implemented system for learning object recognition
strategies. Unfortunately, the ideas underlying this system are sometimes obscured by the
details of the data structures and algorithms themselves. One of SLS's main contributions
is in its formulation of the problem of learning recognition strategies. Up until now, systems
that combine learning and vision have either exploited a single learning technique, such as
neural nets (e.g. ALVINN 1261), or else optimized strategies for exploiting a single vision
technique, such as graph matching (e.g. Goad (16]). As a result, these systems have not
taken advantage of the wealth of vision representations and algorithms developed over the
last twenty years.

SLS, on the other hand, learns strategies for controlling libraries of visual routines and
representations, integrating other researcher's results at the level of an automatic program-
ming system. Whereas other systems try to replace twenty years of vision research, SLS
exploits it.
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Of course, SLS is not the first system to model vision in terms of visual procedures and
hypotheses. The Schema System is just one of many earlier systems that applied blackboard
technology to the task of computer vision. But these systems were ad-hoc and relied on
humans to supply control heuristics, whereas SLS automatically learns strategies for inte-
grating visual procedures into coherent strategies. Just as importantly, the principles by
which SLS develops its strategies can be explicitly and scientifically analyzed, unlike the
hand-built strategies of earlier systems.

SLS's second major contribution is in modeling vision as a sequence of alternating trans-
formation and verification tasks. This idea is really just an application of the old generate-
and-test paradigm to multiple levels of representation, but it can be viewed as an organizing
principle for exploiting machine learning in computer vision. In terms of control, repre-
sentational transformations are discrete steps that must be taken in sequence in order to
match image data to abstract object models. Symbolic (often logic-based) machine learning
techniques are well-suited to this task. Verification, on the other hand, is a filtering problem
that can be solved by many methods, including neural networks, decision trees and tradi-
tional Bayesian classifiers. SLS was implemented with a DNF-based algorithm for selecting
transformational procedures and univariate decision trees for verifying intermediate-level hy-
potheses, but the use of other symbolic inference and/or classification algorithms should be
explored within the alternating transformation and verification model.

Finally, SLS works on real data, and as such is a proof of concept for learning recognition
strategies. Clearly, a great deal more testing will be needed before it can be fielded as a
practical system., Nonetheless, it shows that its algorithms and representations do work, at
least on small sets of real data.
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